Peer-reviewed journal articles

Note: for the PDF file of each article, click on the link at the end of each publication.

69- Wang, Y., Heidarzadeh, M., Satake, K., Mulia, I.E.,  Yamada, M. (2020). A Tsunami Warning System based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. Journal of Geophysical Research, [pdf]

68- Heidarzadeh, M., Putra, P.S., Nugroho, H.S., Rashid, D.B.Z. (2020). Field survey of tsunami heights and runups following the 22 December 2018 Anak Krakatau volcano tsunami, Indonesia. Pure and Applied Geophysics, [pdf]

67- Rajendran, C.P., Heidarzadeh, M., Sanwal, J., Karthykeyan, A., Rajendran, K. (2020). The Orphan Tsunami of 1524 on the Konkan Coast, Western India, and Its Implications. Pure and Applied Geophysics, [pdf]

66- Heidarzadeh, M., Iwamoto, T., Takagawa, T., Takagi, H. (2020). Field surveys and numerical modeling of the August 2016 typhoon Lionrock along the northeastern coast of Japan: The first typhoon making landfall in Tohoku region. Natural Hazards, [pdf]

65- Heidarzadeh, M., Rabinovich, A.B., Kusumoto, S., Rajendran, C.P. (2020). Field surveys and numerical modeling of the 26 December 2004 Indian Ocean tsunami in the area of Mumbai, west coast of India. Geophysical Journal International, [pdf]

64- Sabeti, R., Heidarzadeh, M. (2020). Semi-empirical predictive equations for the initial amplitude of submarine landslide-generated waves: applications to 1994 Skagway and 1998 Papua New Guinea tsunamis. Natural Hazards, [pdf]

63- Satake, K., Heidarzadeh, M., Quiroz, M., Cienfuegos, R. (2020). History and features of trans-oceanic tsunamis and implications for paleo-tsunami studies. Earth-Science Reviews, [pdf]

62- Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., Wijanarto, A.B. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, [pdf]

61- Heidarzadeh, M., Wang, Y., Satake, K., Mulia, I. E. (2019). Potential deployment of offshore bottom pressure gauges and adoption of data assimilation for tsunami warning system in the western Mediterranean Sea. Geoscience Letters, 6: 19. [pdf]

60- Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H.D., Kriswati, E., Supartoyo, Wijanarto, A.B., Imamura, F., Arikawa, T. (2019). The December 2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, 176, 5219–5233. [pdf]

59- Le, T.A., Takagi, H., Heidarzadeh, M., Takata, Y., Takahashi, A.(2019). Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-enclosed Osaka Bay, Japan. Pure and Applied Geophysics, 176(10), 4139–4160. [pdf]

58- Heidarzadeh, M., Šepić, J., Rabinovich, A.B., Allahyar, M., Soltanpour, A., Tavakoli, F. (2019). Meteorological tsunami of 19 March 2017 in the Persian Gulf: Observations and analyses. Pure and Applied Geophysics, [pdf]

57- Salmanidou, D.M., Heidarzadeh, M., Guillas, S. (2019). Probabilistic landslide-generated tsunamis in the Indus Canyon, NW Indian Ocean, using statistical emulationPure and Applied Geophysics, 176, 3099–3114, [pdf]

56- Wang, Y., Maeda, T., Satake, K., Heidarzadeh, M., Su, H., Sheehan, A.F., Gusman, A.R. (2019). Tsunami Data Assimilation Without a Dense Observation NetworkGeophysical Research Letters, 46, [pdf]

55- Heidarzadeh, M., Tappin, D.R., Ishibe, T. (2019). Modeling the large runup along a narrow segment of the Kaikoura coast, New Zealand following the November 2016 tsunami from a potential landslideOcean Engineering, 175, 113-121. [pdf]

54- Heidarzadeh, M., Muhari, A., Wijanarto, A.B. (2018). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176, 25–43. [pdf

53- Heidarzadeh, M., Teeuw, R., Day, S., Solana, C. (2018). Storm wave runups and sea level variations for the September 2017 Hurricane Maria along the coast of Dominica, eastern Caribbean Sea: evidence from field surveys and sea level data analysis. Coastal Engineering Journal, 60 (3), 371–384, [pdf]

52- Heidarzadeh, M., Mirghasemi, A.A., Niroomand, H., Eslamian, F. (2018). Construction and performance of the Karkheh Dam Complementary Cut-off Wall: an innovative engineering solutionInternational Journal of Civil Engineering,17(6), 859–869. [pdf]

51- Heidarzadeh, M., Satake, K., Takagawa, T., Rabinovich, A. and Kusumoto, S. (2018). A comparative study of far-field tsunami amplitudes and ocean-wide propagation properties: Insight from major trans-Pacific tsunamis of 2010-2015Geophysical Journal International, 215, 22-36. [pdf]

50- Heidarzadeh, M., Gusman, A. R. (2018). Application of dense offshore tsunami observations from Ocean Bottom Pressure Gauges (OBPGs) for tsunami research and early warningsIn: Geological Disaster Monitoring Based on Sensor Networks, 7-22, [pdf]

49- Heidarzadeh, M., Ishibe, T., Harada, T. (2018). Constraining the source of the Mw 8.1 Chiapas, Mexico earthquake of 8 September 2017 using teleseismic and tsunami observationsPure and Applied Geophysics, 175(6), 1925–1938. [pdf]

48- Heidarzadeh, M., Necmioglu, O., Ishibe, T., Yalciner, A.C. (2017). Bodrum-Kos (Turkey-Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning systemGeoscience Letters, 4:31, [pdf]

47- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., Takagawa, T. (2017). Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 Mw 7.8 event and its relationship with the April 2012 Mw 8.6 event. Geophysical Journal International, 47(3), 1601-1612, [pdf]

46- Heidarzadeh, M., Satake, K. (2017). Possible dual earthquake–landslide source of the 13 November 2016 Kaikoura, New Zealand tsunami. Pure and Applied Geophysics, 174(10), 3737–3749, [pdf]

45- Fu, L., Heidarzadeh, M., Cukur, D., Chiocci, F. L., Ridente, D., Gross, F., Bialas, J., Krastel, S. (2017). Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern ItalyGeophysical Research Letters, 44 (5),2427–2435. [pdf]

44- Heidarzadeh, M., Murotani, S., Satake, K., Takagawa, T., Saito, T. (2017). Fault size and depth extent of the Ecuador earthquake (Mw 7.8) of 16 April 2016 from teleseismic and tsunami dataGeophysical Research Letters, 44 (5), 2211–2219. [pdf]

43- Heidarzadeh, M., Satake, K.  (2017). A Combined Earthquake-Landslide Source Model for the Tsunami from the 27 November 1945 M 8.1 Makran Earthquake. Bulletin of the Seismological Society of America, 107 (2), 1033-1040, [pdf]

42- Satake, K., and Heidarzadeh, M. (2017). A review of source models of the 2015 Illapel, Chile earthquake and insights from tsunami data. Pure and Applied Geophysics, 174 (1), 1-9. [pdf]

41- Gusman, A., Mulia, I.E., Satake, K., Watada, S., Heidarzadeh, M., Sheehan, A.F. (2016). Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43 (18), 9819–9828. [pdf]

40- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., Gusman, A. (2016). Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 Mw 7.0 normal-fault and 2013 Santa Cruz Mw 8.0 megathrust earthquakes. Geophysical Research Letters, 43 (9), 4340–4349. [pdf]

39- Gusman, A.R., Sheehan, A., Satake, K., Heidarzadeh, M., Mulia, I.E., Maeda, E. (2016). Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43 (9), 4189–4196. [pdf]

38- Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., Gusman, A.R. (2016). Source model of the 16 September 2015 Illapel, Chile Mw 8.4 earthquake based on teleseismic and tsunami dataGeophysical Research Letters, 43 (2), 643–650. [pdf]

37- Sheehan, A., Gusman, A.R., Heidarzadeh, M., & Satake, K. (2015). Array observations of the 2012 Haida Gwaii tsunami using Cascadia Initiative absolute and differential seafloor pressure gaugesSeismological Research Letters, 86(5), 1278-1286. [pdf]

36- Heidarzadeh, M., Gusman, A.R., Harada, T., & Satake, K. (2015). Tsunamis from the 29 March and 5 May 2015 Papua New Guinea earthquake doublet (Mw 7.5) and tsunamigenic potential of the New Britain trenchGeophysical Research Letters, 42 (14), 5958-5965. [pdf]

35- Heidarzadeh, M., & Satake, K. (2015). Source properties of the 17 July 1998 Papua New Guinea tsunami based on tide gauge recordsGeophysical Journal International, 202 (1), 361-369. [pdf]

34- Heidarzadeh, M., Mirghasemi, A.A., and Niroomand, H., (2015), Construction of relief wells under artesian flow conditions at dam toes: engineering experiences from Karkheh dam, Iran. International Journal of Civil Engineering, 13 (1), 73-80. [pdf]

33- Heidarzadeh, M. (2015). Tsunami Risk, Preparedness and Warning System in Pakistan. In: Disaster Risk Reduction Approaches in Pakistan (pp. 119-129). Springer International publishing. [pdf]

32- Heidarzadeh, M., & Satake, K. (2015). New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data. Pure and Applied Geophysics, 172 (3), 621–640. [pdf]

31- Nassiraei, H., Heidarzadeh, M., Shafieefar, M. (2015). Numerical simulation of long waves (tsunamis) forces on caisson breakwaters. Sharif: Civil Engineering, 32 (2), 3-12. (in Persian with English abstract). [pdf]

30- Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., & Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS dataGeophysical Research Letters, 42, 1053-1060. [pdf]

29- Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., Watada, S. (2015). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172 (3), 719–730. [pdf]

28- Heidarzadeh, M., Krastel, S., & Yalciner, A. C. (2014). The State-of-the-Art Numerical Tools for Modeling Landslide Tsunamis: A Short Review. In: Submarine Mass Movements and Their Consequences, Chapter 43, 483-495, ISBN: 978-3-319-00971-1, Springer International publishing. [pdf]

27- Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquakeGeophysical Journal International, 199 (2), 752-766. [pdf]

26- Heidarzadeh, M., & Satake, K. (2014). Excitation of Basin-Wide Modes of the Pacific Ocean Following the March 2011 Tohoku TsunamiPure and Applied Geophysics, 171 (12), 3405–3419. [pdf]

25- Yalciner, A. C., Zaytsev, A., Aytore, B., Insel, I., Heidarzadeh, M., Kian, R., & Imamura, F. (2014). A Possible Submarine Landslide and Associated Tsunami at the Northwest Nile Delta, Mediterranean SeaOceanography, 27(2), 68-75. [pdf]

24- Heidarzadeh, M., & Satake, K. (2014). The El Salvador and Philippines Tsunamis of August 2012: Insights from Sea Level Data Analysis and Numerical Modeling. Pure and Applied Geophysics, 171 (12), 3437–3455. [pdf]

23- Lindhorst, K., Krastel, S., Papenberg, C., & Heidarzadeh, M. (2014). Modeling Submarine Landslide-Generated Waves in Lake Ohrid, Macedonia/Albania. In: Submarine Mass Movements and Their Consequences, Chapter 44, 497-506, ISBN: 978-3-319-00971-1, Springer International Publishing. [pdf]

22- Schwab, J., Krastel, S., Heidarzadeh, M., & Brune, S. (2014). Modeling of Potential Landslide Tsunami Hazards Off Western Thailand (Andaman Sea). In: Submarine Mass Movements and Their Consequences, Chapter 46, 517-527, ISBN: 978-3-319-00971-1. [pdf]

21- Heidarzadeh, M., Mirghasemi, A., Eslamian, F., Sadr-Lahijani, S. (2013).  Application of cement grouting for stabilization of coarse materials. International Journal of Civil Engineering, 11(1), 71-77. [pdf]

20- Heidarzadeh, M., & Satake, K. (2013). The 21 May 2003 tsunami in the Western Mediterranean Sea: Statistical and wavelet analyses. Pure and Applied Geophysics, 170 (9), 1449-1462. [pdf]

19- Heidarzadeh, M., & Satake, K. (2013). Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean. Pure and Applied Geophysics, 170 (6), 1275-1293. [pdf]

18- Mori, N., Takahashi, T., and The 2011 Tohoku Earthquake Tsunami Joint Survey Group, (2012), Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunamiCoastal Engineering Journal, 54 (1), 1-27. [pdf]

17- Tsuji, Y., Satake, K., Ishibe, T., Kusumoto, S., Harada, T., Nishiyama, A., Kim, H. Y, Ueno, T., Murotani, S., Oki, S., Sugimoto, M., Tomari, J., Heidarzadeh, M., Watada, S., Imai, K., Choi, B. H., Yoon, S. B., Bae, J. S., Kim, K. O., Kim, H.W., (2011), Field surveys of  tsunami heights from the 2011 off the Pacific Coast of Tohoku, Japan EarthquakeBulletin of Earthquake Research Institute of University of Tokyo, 86, 29-279. [pdf]

16- Heidarzadeh, M., Kijko, A. (2011).  A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 56 (3), 577-593. [pdf]

15- Heidarzadeh, M. (2011).  Major tsunami risk from splay faulting. In: The Tsunami Threat – Research and Technology, Chapter 5, 67-80. ISBN: 978-953-307-552-5, INTECH International publishing. [pdf]

14- Heidarzadeh, M., Pirooz M.D., Zaker N.H., (2010), Numerical modeling of generation and propagation of tsunami waves along the southern coast of Iran, Journal of Civil and Surveying Engineering, 44 (2), 165-180. (in Persian with English abstract). [pdf]

13- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C. (2009), Modeling the near-field effects of the worst possible tsunami in the Makran subduction zone. Ocean Engineering, 36 (5), 368–376. [pdf]

12- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C. (2009), Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 48 (2), 229-243. [pdf]

11- Heidarzadeh, M., Pirooz M.D., Zaker N.H., (2009), Propagation pattern and tsunami travel time charts for the Iranian southern coastlines for use in the tsunami warning system, Modares Technical and Engineering, 36, 111-128. (in Persian with English abstract). [pdf] 

10- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C., Mokhtari, M., and Esmaeily, A. (2008), Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35 (8-9), 774-786. [pdf]

9- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Synolakis, C.E., (2008), Evaluating tsunami hazard in the northwestern Indian Ocean. Pure and Applied Geophysics, 165 (11), 2045–2058. [pdf]

8- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Mokhtari, M., (2008), History of tsunami occurrences and assessment of tsunami generation potential of the Makran subduction zone, Geosciences Scientific Quarterly Journal, 18 (68), 150-169. (in Persian with English abstract). [pdf]

7- Heidarzadeh, M., Pirooz M.D., Zaker N.H., Mokhtari M., (2007), Evaluating the potential for tsunami Ggneration in southern Iran. International Journal of Civil Engineering, 5 (4), 312-329. [pdf]

6- Zahrai, S.M., Heidarzadeh, M. (2007).  Destructive effects of the 2003 Bam Earthquake on structures. Asian Journal of Civil Engineering, 8(3), 329-342. [pdf]

5- Heidarzadeh, M., Mirghasemi, A.A., and Etemadzadeh, S.M., (2007), Experimental study of chemical grouting of conglomerate foundations, International Journal of Civil Engineering, 5 (1), 66-83. [pdf]

4- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Mokhtari, M., (2008), Assessment of tsunami generation potential and presenting a tsunami warning system for southern coasts of Iran bordering the Indian OceanSharif: Civil Engineering, 44, 45-58. (in Persian with English abstract). [pdf]

3- Heidarzadeh, M., Mirghasemi, A.A., and Etemadzadeh, S.M., (2006), Utilization of chemical grouting for water sealing of part of Karkheh dam foundation, Sharif: Civil Engineering, 35, 77-88. (in Persian with English abstract). [pdf]

2- Heidarzadeh, M., Zahrai, S.M., (2006), Assessment of the application of tuned liquid dampers for structural motion control subjected to earthquake excitations and using nonlinear elasto-plastic analysis, Journal of Faculty of Engineering, 40 (5), 763-768. (in Persian with English abstract). [pdf]

1- Zahrai, S.M., and Heidarzadeh, M., (2004), Tuned liquid dampers for passive control of structures. Research Bulletin of Seismology and Earthquake Engineering, 7 (1), 37-46. (in Persian with English abstract). [pdf]


1- Heidarzadeh, M., Mirghasemi, A.A. (2010), Application of chemical grouting in dam engineering. Iranian National Committee on Large Dams (IRCOLD), Publication No. 87. ISBN: 978-964-8460-35-3, 132 pages. (in Persian with English abstract). [pdf]

Leave a Reply

Your email address will not be published. Required fields are marked *