Publications

Peer-reviewed journal articles

Note: for the PDF file of each article, click on the link at the end of each publication.

Year 2022

94- Ehara, A., Salmanidou, D., Heidarzadeh, M., Guillas, S. (2022). Multi-level emulation of tsunami simulations over Cilacap, South Java, Indonesia. Computational Geosciences. Accepted.

93- Adams, K., Heidarzadeh, M. (2022). Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling. Natural Hazards. https://doi.org/10.1007/s11069-022-05692-2. [pdf]

92- Sabeti, R., Heidarzadeh, M. (2022). Numerical simulations of water waves generated by subaerial granular and solid-block landslides: validation, comparison, and predictive equations. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2022.112853. [pdf]

91- Heidarzadeh, M., Mulia, I.E. (2022). A new dual earthquake and submarine landslide source model for the 28 September 2018 Palu (Sulawesi), Indonesia tsunami. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2022.2122293. [pdf]

90- Momeni, P., Goda, K., Mokhtari, M., Heidarzadeh, M. (2022). A new tsunami hazard assessment for eastern Makran subduction zone by considering splay faults and applying stochastic modeling. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2022.2117585. [pdf] 

89- Heidarzadeh, M., Miyazaki, H., Ishibe, T., Takagi, H., Sabeti, R. (2022). Field surveys of September 2018 landslide-generated waves in the Apporo dam reservoir, Japan: Combined hazard from the concurrent occurrences of a typhoon and an earthquake. Landslides. https://doi.org/10.1007/s10346-022-01959-8. [pdf]

88- Sabeti, R., Heidarzadeh, M. (2022). A new predictive equation for estimating wave period of subaerial solid-block landslide-generated waves. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2022.2110657[pdf]

87- Heidarzadeh, M., Gusman, A., Ishibe, T., Sabeti, R., Šepić, J. (2022). Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling. Ocean Engineering, 261, 112165. https://doi.org/10.1016/j.oceaneng.2022.112165. [pdf]

86- Heidarzadeh, M., Feizi, S. (2022). A cascading risk model for the failure of the concrete spillway of the Toddbrook dam, England during the August 2019 flooding. International Journal of Disaster Risk Reduction, 80, 103214. https://doi.org/10.1016/j.ijdrr.2022.103214. [pdf]

85- Heidarzadeh, M., Gusman, A. R., Patria, A., Widyantoro, B. T. (2022). Potential landslide origin of the Seram Island tsunami in Eastern Indonesia on 16 June 2021 following an Mw 5.9 earthquake. Bulletin of the Seismological Society of America, Accepted, https://doi.org/10.1785/0120210274. [pdf]

84- Mulia, I.E., Gusman, A.R., Heidarzadeh, M., Satake, K. (2022). Sensitivity of tsunami data to the updip extent of the July 2021 Mw 8.2 Alaska earthquake. Seismological Research Letters, 93 (4), 1992-2003. https://doi.org/10.1785/0220210359. [pdf]

83- Wang, Y., Heidarzadeh, M., Satake, K., Hu, G. (2022). Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in Kermadec Islands on March 4, 2021. Natural Hazards and Earth System Sciences, 22, 1073–1082. https://doi.org/10.5194/nhess-22-1073-2022. [pdf]

82- Mulia, I.E., Heidarzadeh, M., Satake, K. (2022). Effects of depth of fault slip and continental shelf geometry on the generation of anomalously long-period tsunami by the July 2020 Mw 7.8 Shumagin (Alaska) earthquake. Geophysical Research Letters. https://doi.org/10.1029/2021GL094937. [pdf]

81- Sabeti, R., Heidarzadeh, M. (2022). A new empirical equation for predicting the maximum initial amplitude of submarine landslide-generated waves. Landslides, 19, 491–503. https://doi.org/10.1007/s10346-021-01747-w. [pdf]

80- Sabeti, R., Heidarzadeh, M. (2022). Numerical Simulations of Tsunami Wave Generation by Submarine Landslides: Validation and Sensitivity Analysis to landslide parameters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 148(2), 05021016. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000694. [pdf]

Year 2021

79- Heidarzadeh, M., Mulia, I.E. (2021). Ultra-long period and small-amplitude tsunami generated following the July 2020 Alaska Mw7.8 tsunamigenic earthquake. Ocean Engineering, 234, 109243. https://doi.org/10.1016/j.oceaneng.2021.109243. [pdf]

78- Heidarzadeh, M., Pranantyo, I.R., Okuwaki, R., Dogan, G.G., Yalciner, A.C. (2021). Long tsunami oscillations following the 30 October 2020 Mw 7.0 Aegean Sea earthquake: Observations and modelling. Pure and Applied Geophysics, 178, 1531–1548. https://doi.org/10.1007/s00024-021-02761-8. [pdf]

77- Gopinathan, D., Heidarzadeh, M., Guillas, S. (2021). Probabilistic Quantification of tsunami current hazard using statistical emulation. Philosophical Transactions of the Royal Society A, 477, 20210180. https://doi.org/10.1098/rspa.2021.0180. [pdf]

76- Salmanidou, D.M., Ehara, A., Himaz, R., Heidarzadeh, M., Guillas, S. (2021). Impact of future tsunamis from the Java trench on household welfare: merging geophysics and economics through catastrophe modelling. International Journal of Disaster Risk Reduction, 61, 102291. https://doi.org/10.1016/j.ijdrr.2021.102291. [pdf]

75- Pranantyo, I.R., Heidarzadeh, M., Cummins, P.R. (2021). Complex tsunami hazards in eastern Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and modern data. Geoscience Letters, 8, 20. https://doi.org/10.1186/s40562-021-00190-y. [pdf]

74- Heidarzadeh, M., Ishibe, T.,  Harada, T., Natawidjaja, D.H., Pranantyo, I.R., Widyantoro, B.T. (2021). High potential for splay faulting in the Molucca Sea, Indonesia: November 2019 Mw7.2 earthquake and tsunami. Seismological Research Letters, 92 (5), 2915–2926. https://doi.org/10.1785/0220200442. [pdf]

73- Heidarzadeh, M., Gusman, A. R. (2021). Source modeling and spectral analysis of the Crete tsunami of 2 May 2020 along the Hellenic Subduction Zone, offshore Greece. Earth, Planets and Space, 73, 74. https://doi.org/10.1186/s40623-021-01394-4. [pdf]

72- Adams, K., Heidarzadeh, M. (2021). A multi-hazard risk model with cascading failure pathways for the Dawlish (UK) railway using historical and contemporary data. International Journal of Disaster Risk Reduction, 56, 102082. https://doi.org/10.1016/j.ijdrr.2021.102082. [pdf]

71- Heidarzadeh, M., Rabinovich, A. B. (2021). Combined Hazard of Typhoon-Generated Meteorological Tsunamis and Storm Surges along the Coast of Japan. Natural Hazards, 106,1639–1672. https://doi.org/10.1007/s11069-020-04448-0. [pdf]

70- Heidarzadeh, M., Iwamoto, T., Takagawa, T., Takagi, H. (2021). Field surveys and numerical modeling of the August 2016 typhoon Lionrock along the northeastern coast of Japan: The first typhoon making landfall in Tohoku region. Natural Hazards, 105, 1–19. https://doi.org/10.1007/s11069-020-04112-7. [pdf]

69- Rajendran, C.P., Heidarzadeh, M., Sanwal, J., Karthykeyan, A., Rajendran, K. (2021). The Orphan Tsunami of 1524 on the Konkan Coast, Western India, and Its Implications. Pure and Applied Geophysics, 178, 4697–4716. https://doi.org/10.1007/s00024-020-02575-0. [pdf]

Year 2020

68- Momeni, P., Goda, K., Heidarzadeh, M., Qin, J. (2020). Stochastic Analysis of Tsunami Hazard of the 1945 Makran Subduction Zone Mw 8.1–8.3 Earthquakes. Geosciences, 10 (11), 452. https://doi.org/10.3390/geosciences10110452. [pdf]

67- Wang, Y., Heidarzadeh, M., Satake, K., Mulia, I.E.,  Yamada, M. (2020). A Tsunami Warning System based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. Journal of Geophysical Research, https://doi.org/10.1029/2020JB020293. [pdf]

66- Heidarzadeh, M., Putra, P.S., Nugroho, H.S., Rashid, D.B.Z. (2020). Field survey of tsunami heights and runups following the 22 December 2018 Anak Krakatau volcano tsunami, Indonesia. Pure and Applied Geophysics, 177, 4577–4595. https://doi.org/10.1007/s00024-020-02587-w. [pdf]

65- Heidarzadeh, M., Rabinovich, A.B., Kusumoto, S., Rajendran, C.P. (2020). Field surveys and numerical modeling of the 26 December 2004 Indian Ocean tsunami in the area of Mumbai, west coast of India. Geophysical Journal International, 222 (3), 1952–1964. https://doi.org/10.1093/gji/ggaa277. [pdf]

64- Sabeti, R., Heidarzadeh, M. (2020). Semi-empirical predictive equations for the initial amplitude of submarine landslide-generated waves: applications to 1994 Skagway and 1998 Papua New Guinea tsunamis. Natural Hazards, 103, 1591–1611. https://doi.org/10.1007/s11069-020-04050-4. [pdf]

63- Satake, K., Heidarzadeh, M., Quiroz, M., Cienfuegos, R. (2020). History and features of trans-oceanic tsunamis and implications for paleo-tsunami studies. Earth-Science Reviews, 202, 103112. https://doi.org/10.1016/j.earscirev.2020.103112. [pdf]

62- Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., Wijanarto, A.B. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, 106733. https://doi.org/10.1016/j.oceaneng.2019.106733. [pdf]

61- Heidarzadeh, M., Šepić, J., Rabinovich, A.B., Allahyar, M., Soltanpour, A., Tavakoli, F. (2020). Meteorological tsunami of 19 March 2017 in the Persian Gulf: Observations and analyses. Pure and Applied Geophysics, 177, 1231–1259. https://doi.org/10.1007/s00024-019-02263-8. [pdf]

Year 2019

60- Heidarzadeh, M., Wang, Y., Satake, K., Mulia, I. E. (2019). Potential deployment of offshore bottom pressure gauges and adoption of data assimilation for tsunami warning system in the western Mediterranean Sea. Geoscience Letters, 6: 19. https://doi.org/10.1186/s40562-019-0149-8. [pdf]

59- Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H.D., Kriswati, E., Supartoyo, Wijanarto, A.B., Imamura, F., Arikawa, T. (2019). The December 2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, 176, 5219–5233. https://doi.org/10.1007/s00024-019-02358-2. [pdf]

58- Le, T.A., Takagi, H., Heidarzadeh, M., Takata, Y., Takahashi, A.(2019). Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-enclosed Osaka Bay, Japan. Pure and Applied Geophysics, 176(10), 4139–4160. https://doi.org/10.1007/s00024-019-02295-0. [pdf]

57- Salmanidou, D.M., Heidarzadeh, M., Guillas, S. (2019). Probabilistic landslide-generated tsunamis in the Indus Canyon, NW Indian Ocean, using statistical emulationPure and Applied Geophysics, 176, 3099–3114, https://doi.org/10.1007/s00024-019-02187-3. [pdf]

56- Wang, Y., Maeda, T., Satake, K., Heidarzadeh, M., Su, H., Sheehan, A.F., Gusman, A.R. (2019). Tsunami Data Assimilation Without a Dense Observation NetworkGeophysical Research Letters, 46, 20452053. https://doi.org/10.1029/2018GL080930. [pdf]

55- Heidarzadeh, M., Tappin, D.R., Ishibe, T. (2019). Modeling the large runup along a narrow segment of the Kaikoura coast, New Zealand following the November 2016 tsunami from a potential landslideOcean Engineering, 175, 113-121. https://doi.org/10.1016/j.oceaneng.2019.02.024. [pdf]

54- Heidarzadeh, M., Muhari, A., Wijanarto, A.B. (2019). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176, 25–43. https://doi.org/10.1007/s00024-018-2065-9. [pdf

53- Heidarzadeh, M., Mirghasemi, A.A., Niroomand, H., Eslamian, F. (2019). Construction and performance of the Karkheh Dam Complementary Cut-off Wall: an innovative engineering solutionInternational Journal of Civil Engineering,17(6), 859–869. https://doi.org/10.1007/s40999-018-0370-4. [pdf]

52- Heidarzadeh, M., Gusman, A. R. (2019). Application of dense offshore tsunami observations from Ocean Bottom Pressure Gauges (OBPGs) for tsunami research and early warningsIn: Geological Disaster Monitoring Based on Sensor Networks, 7-22, https://doi.org/10.1007/978-981-13-0992-2_2. [pdf]

Year 2018

51- Heidarzadeh, M., Teeuw, R., Day, S., Solana, C. (2018). Storm wave runups and sea level variations for the September 2017 Hurricane Maria along the coast of Dominica, eastern Caribbean Sea: evidence from field surveys and sea level data analysis. Coastal Engineering Journal, 60 (3), 371–384, https://doi.org/10.1080/21664250.2018.1546269. [pdf]

50- Heidarzadeh, M., Satake, K., Takagawa, T., Rabinovich, A. and Kusumoto, S. (2018). A comparative study of far-field tsunami amplitudes and ocean-wide propagation properties: Insight from major trans-Pacific tsunamis of 2010-2015Geophysical Journal International, 215, 22-36. https://doi.org/10.1093/gji/ggy265. [pdf]

49- Heidarzadeh, M., Ishibe, T., Harada, T. (2018). Constraining the source of the Mw 8.1 Chiapas, Mexico earthquake of 8 September 2017 using teleseismic and tsunami observationsPure and Applied Geophysics, 175(6), 1925–1938. https://doi.org/10.1007/s00024-018-1837-6. [pdf]

Year 2017

48- Heidarzadeh, M., Necmioglu, O., Ishibe, T., Yalciner, A.C. (2017). Bodrum-Kos (Turkey-Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning systemGeoscience Letters, 4:31, https://doi.org/10.1186/s40562-017-0097-0. [pdf]

47- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., Takagawa, T. (2017). Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 Mw 7.8 event and its relationship with the April 2012 Mw 8.6 event. Geophysical Journal International, 47(3), 1601-1612, https://doi.org/10.1093/gji/ggx395. [pdf]

46- Heidarzadeh, M., Satake, K. (2017). Possible dual earthquake–landslide source of the 13 November 2016 Kaikoura, New Zealand tsunami. Pure and Applied Geophysics, 174(10), 3737–3749, https://doi.org/10.1007/s00024-017-1637-4. [pdf]

45- Fu, L., Heidarzadeh, M., Cukur, D., Chiocci, F. L., Ridente, D., Gross, F., Bialas, J., Krastel, S. (2017). Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern ItalyGeophysical Research Letters, 44 (5),2427–2435. https://doi.org/10.1002/2017GL072647. [pdf]

44- Heidarzadeh, M., Murotani, S., Satake, K., Takagawa, T., Saito, T. (2017). Fault size and depth extent of the Ecuador earthquake (Mw 7.8) of 16 April 2016 from teleseismic and tsunami dataGeophysical Research Letters, 44 (5), 2211–2219. https://doi.org/10.1002/2017GL072545. [pdf]

43- Heidarzadeh, M., Satake, K.  (2017). A Combined Earthquake-Landslide Source Model for the Tsunami from the 27 November 1945 M 8.1 Makran Earthquake. Bulletin of the Seismological Society of America, 107 (2), 1033-1040, https://doi.org/10.1785/0120160196. [pdf]

42- Satake, K., and Heidarzadeh, M. (2017). A review of source models of the 2015 Illapel, Chile earthquake and insights from tsunami data. Pure and Applied Geophysics, 174 (1), 1-9. https://doi.org/10.1007/s00024-016-1450-5. [pdf]

Year 2016

41- Gusman, A., Mulia, I.E., Satake, K., Watada, S., Heidarzadeh, M., Sheehan, A.F. (2016). Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43 (18), 9819–9828. https://doi.org/10.1002/2016GL070140. [pdf]

40- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., Gusman, A. (2016). Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 Mw 7.0 normal-fault and 2013 Santa Cruz Mw 8.0 megathrust earthquakes. Geophysical Research Letters, 43 (9), 4340–4349. https://doi.org/10.1002/2016GL068601. [pdf]

39- Gusman, A.R., Sheehan, A., Satake, K., Heidarzadeh, M., Mulia, I.E., Maeda, E. (2016). Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43 (9), 4189–4196. https://doi.org/10.1002/2016GL068368. [pdf]

38- Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., Gusman, A.R. (2016). Source model of the 16 September 2015 Illapel, Chile Mw 8.4 earthquake based on teleseismic and tsunami dataGeophysical Research Letters, 43 (2), 643–650. https://doi.org/10.1002/2015GL067297. [pdf]

37- Nassiraei, H., Heidarzadeh, M., Shafieefar, M. (2016). Numerical simulation of long waves (tsunamis) forces on caisson breakwaters. Sharif: Civil Engineering, 32 (2), 3-12. (in Persian with English abstract). http://sjce.journals.sharif.edu/article_1048_0.html [pdf]

Year 2015

36- Sheehan, A., Gusman, A.R., Heidarzadeh, M., & Satake, K. (2015). Array observations of the 2012 Haida Gwaii tsunami using Cascadia Initiative absolute and differential seafloor pressure gaugesSeismological Research Letters, 86(5), 1278-1286. https://doi.org/10.1785/0220150108. [pdf]

35- Heidarzadeh, M., Gusman, A.R., Harada, T., & Satake, K. (2015). Tsunamis from the 29 March and 5 May 2015 Papua New Guinea earthquake doublet (Mw 7.5) and tsunamigenic potential of the New Britain trenchGeophysical Research Letters, 42 (14), 5958-5965. https://doi.org/10.1002/2015GL064770. [pdf]

34- Heidarzadeh, M., & Satake, K. (2015). Source properties of the 17 July 1998 Papua New Guinea tsunami based on tide gauge recordsGeophysical Journal International, 202 (1), 361-369. https://doi.org/10.1093/gji/ggv145. [pdf]

33- Heidarzadeh, M., Mirghasemi, A.A., and Niroomand, H., (2015), Construction of relief wells under artesian flow conditions at dam toes: engineering experiences from Karkheh dam, Iran. International Journal of Civil Engineering, 13 (1), 73-80. https://doi.org/10.22068/IJCE.13.1.73. [pdf]

32- Heidarzadeh, M. (2015). Tsunami Risk, Preparedness and Warning System in Pakistan. In: Disaster Risk Reduction Approaches in Pakistan (pp. 119-129). Springer International publishing. https://doi.org/10.1007/978-4-431-55369-4_6. [pdf]

31- Heidarzadeh, M., & Satake, K. (2015). New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data. Pure and Applied Geophysics, 172 (3), 621–640. https://doi.org/10.1007/s00024-014-0948-y. [pdf]

30- Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., & Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS dataGeophysical Research Letters, 42, 1053-1060. https://doi.org/10.1002/2014GL062604. [pdf]

29- Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., Watada, S. (2015). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172 (3), 719–730. https://doi.org/10.1007/s00024-014-0983-8. [pdf]

Year 2014

28- Heidarzadeh, M., Krastel, S., & Yalciner, A. C. (2014). The State-of-the-Art Numerical Tools for Modeling Landslide Tsunamis: A Short Review. In: Submarine Mass Movements and Their Consequences, Chapter 43, 483-495, ISBN: 978-3-319-00971-1, Springer International publishing. https://doi.org/10.1007/978-3-319-00972-8_43. [pdf]

27- Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquakeGeophysical Journal International, 199 (2), 752-766. https://doi.org/10.1093/gji/ggu297. [pdf]

26- Heidarzadeh, M., & Satake, K. (2014). Excitation of Basin-Wide Modes of the Pacific Ocean Following the March 2011 Tohoku TsunamiPure and Applied Geophysics, 171 (12), 3405–3419. https://doi.org/10.1007/s00024-013-0731-5. [pdf]

25- Yalciner, A. C., Zaytsev, A., Aytore, B., Insel, I., Heidarzadeh, M., Kian, R., & Imamura, F. (2014). A Possible Submarine Landslide and Associated Tsunami at the Northwest Nile Delta, Mediterranean SeaOceanography, 27(2), 68-75. https://doi.org/10.5670/oceanog.2014.41. [pdf]

24- Heidarzadeh, M., & Satake, K. (2014). The El Salvador and Philippines Tsunamis of August 2012: Insights from Sea Level Data Analysis and Numerical Modeling. Pure and Applied Geophysics, 171 (12), 3437–3455. https://doi.org/10.1007/s00024-014-0790-2. [pdf]

23- Lindhorst, K., Krastel, S., Papenberg, C., & Heidarzadeh, M. (2014). Modeling Submarine Landslide-Generated Waves in Lake Ohrid, Macedonia/Albania. In: Submarine Mass Movements and Their Consequences, Chapter 44, 497-506, ISBN: 978-3-319-00971-1, Springer International Publishing. https://doi.org/10.1007/978-3-319-00972-8_44. [pdf]

22- Schwab, J., Krastel, S., Heidarzadeh, M., & Brune, S. (2014). Modeling of Potential Landslide Tsunami Hazards Off Western Thailand (Andaman Sea). In: Submarine Mass Movements and Their Consequences, Chapter 46, 517-527, ISBN: 978-3-319-00971-1. https://doi.org/10.1007/978-3-319-00972-8_46. [pdf]

Year 2013

21- Heidarzadeh, M., Mirghasemi, A., Eslamian, F., Sadr-Lahijani, S. (2013).  Application of cement grouting for stabilization of coarse materials. International Journal of Civil Engineering, 11(1), 71-77. http://ijce.iust.ac.ir/article-1-653-en.html. [pdf]

20- Heidarzadeh, M., & Satake, K. (2013). The 21 May 2003 tsunami in the Western Mediterranean Sea: Statistical and wavelet analyses. Pure and Applied Geophysics, 170 (9), 1449-1462. https://doi.org/10.1007/s00024-012-0509-1. [pdf]

19- Heidarzadeh, M., & Satake, K. (2013). Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean. Pure and Applied Geophysics, 170 (6), 1275-1293. https://doi.org/10.1007/s00024-012-0558-5. [pdf]

Year 2012

18- Mori, N., Takahashi, T., and The 2011 Tohoku Earthquake Tsunami Joint Survey Group, (2012), Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunamiCoastal Engineering Journal, 54 (1), 1-27. https://doi.org/10.1142/S0578563412500015. [pdf]

Year 2011

17- Tsuji, Y., Satake, K., Ishibe, T., Kusumoto, S., Harada, T., Nishiyama, A., Kim, H. Y, Ueno, T., Murotani, S., Oki, S., Sugimoto, M., Tomari, J., Heidarzadeh, M., Watada, S., Imai, K., Choi, B. H., Yoon, S. B., Bae, J. S., Kim, K. O., Kim, H.W., (2011), Field surveys of  tsunami heights from the 2011 off the Pacific Coast of Tohoku, Japan EarthquakeBulletin of Earthquake Research Institute of University of Tokyo, 86, 29-279. [pdf]

16- Heidarzadeh, M., Kijko, A. (2011).  A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 56 (3), 577-593. https://doi.org/10.1007/s11069-010-9574-x. [pdf]

15- Heidarzadeh, M. (2011).  Major tsunami risk from splay faulting. In: The Tsunami Threat – Research and Technology, Chapter 5, 67-80. ISBN: 978-953-307-552-5, INTECH International publishing. https://doi.org/10.5772/13375. [pdf]

Year 2010

14- Heidarzadeh, M., Pirooz M.D., Zaker N.H., (2010), Numerical modeling of generation and propagation of tsunami waves along the southern coast of Iran. Journal of Civil and Surveying Engineering, 44 (2), 165-180. (in Persian with English abstract). https://jcse.ut.ac.ir/article_20776.html?lang=en. [pdf]

Year 2009

13- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C. (2009), Modeling the near-field effects of the worst possible tsunami in the Makran subduction zone. Ocean Engineering, 36 (5), 368–376. https://doi.org/10.1016/j.oceaneng.2009.01.004. [pdf]

12- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C. (2009), Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 48 (2), 229-243. https://doi.org/10.1007/s11069-008-9259-x. [pdf]

11- Heidarzadeh, M., Pirooz M.D., Zaker N.H., (2009), Propagation pattern and tsunami travel time charts for the Iranian southern coastlines for use in the tsunami warning system, Modares Technical and Engineering, 36, 111-128. (in Persian with English abstract). [pdf] 

Year 2008

10- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C., Mokhtari, M., and Esmaeily, A. (2008), Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35 (8-9), 774-786. https://doi.org/10.1016/j.oceaneng.2008.01.017. [pdf]

9- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Synolakis, C.E., (2008), Evaluating tsunami hazard in the northwestern Indian Ocean. Pure and Applied Geophysics, 165 (11), 2045–2058. https://doi.org/10.1007/s00024-008-0415-8. [pdf]

8- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Mokhtari, M., (2008), History of tsunami occurrences and assessment of tsunami generation potential of the Makran subduction zone, Geosciences Scientific Quarterly Journal, 18 (68), 150-169. (in Persian with English abstract). https://www.magiran.com/paper/615678. [pdf]

7- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Mokhtari, M., (2008), Assessment of tsunami generation potential and presenting a tsunami warning system for southern coasts of Iran bordering the Indian OceanSharif: Civil Engineering, 44, 45-58. (in Persian with English abstract). http://sjce.journals.sharif.edu/article_20252.html?lang=en. [pdf]

Year 2007

6- Heidarzadeh, M., Pirooz M.D., Zaker N.H., Mokhtari M., (2007), Evaluating the potential for tsunami Ggneration in southern Iran. International Journal of Civil Engineering, 5 (4), 312-329. http://ijce.iust.ac.ir/article-1-333-en.html. [pdf]

5- Zahrai, S.M., Heidarzadeh, M. (2007). Destructive effects of the 2003 Bam Earthquake on structures. Asian Journal of Civil Engineering, 8(3), 329-342. [pdf]

4- Heidarzadeh, M., Mirghasemi, A.A., and Etemadzadeh, S.M., (2007), Experimental study of chemical grouting of conglomerate foundations, International Journal of Civil Engineering, 5 (1), 66-83. http://ijce.iust.ac.ir/article-1-314-en.html. [pdf]

Year 2006

3- Heidarzadeh, M., Mirghasemi, A.A., and Etemadzadeh, S.M., (2006), Utilization of chemical grouting for water sealing of part of Karkheh dam foundation, Sharif: Civil Engineering, 35, 77-88. (in Persian with English abstract). http://sjce.journals.sharif.edu/article_276_34.html. [pdf]

2- Heidarzadeh, M., Zahrai, S.M., (2006), Assessment of the application of tuned liquid dampers for structural motion control subjected to earthquake excitations and using nonlinear elasto-plastic analysis, Journal of Faculty of Engineering, 40 (5), 763-768. (in Persian with English abstract). [pdf]

Year 2004

1- Zahrai, S.M., and Heidarzadeh, M., (2004), Tuned liquid dampers for passive control of structures. Research Bulletin of Seismology and Earthquake Engineering, 7 (1), 37-46. (in Persian with English abstract). [pdf]

Books

1- Heidarzadeh, M., Mirghasemi, A.A. (2010), Application of chemical grouting in dam engineering. Iranian National Committee on Large Dams (IRCOLD), Publication No. 87. ISBN: 978-964-8460-35-3, 132 pages. (in Persian with English abstract). [pdf]

Leave a Reply

Your email address will not be published. Required fields are marked *