Publications

Peer-reviewed journal articles

Note: for the PDF file of each article, click on the link at the end of each publication.

Year 2024

108- Heidarzadeh, M., Heller, V., Zhao, T., Goff, C. (2024). Lessons for dam safety in the UK from the landslide-generated waves incident in the Apporo dam reservoir, Japan. Proc. British Dam Society 22nd Biennial Conference, S3.7.  [pdf]

107- Nugroho, S.H., Putra, P.S., Amar, Heidarzadeh, M. (2024). Effects of artificial structures on grain size and characteristics of the 2018 Anak Krakatau tsunami deposits. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-024-03558-1. [pdf]

106- Mulia, I. E., Heidarzadeh, M.,  Gusman, A.R., Satake, K., Fujii, Y., Sujatmiko, K.A., Meilano, I., Windupranata, W. (2023). Compounding impacts of the earthquake and submarine landslide on the Toyama bay tsunami during the January 2024 Noto Peninsula event. Ocean Engineering, 310, 118698. https://doi.org/10.1016/j.oceaneng.2024.118698. [pdf]

105- Heidarzadeh, M., Ishibe, T., Gusman, A.R., Miyazaki, H. (2024). Field surveys of tsunami runup and damage following the January 2024 Mw 7.5 Noto (Japan Sea) tsunamigenic earthquake. Ocean Engineering, 307, 118140. https://doi.org/10.1016/j.oceaneng.2024.118140. [pdf]

104- Sabeti, R., Heidarzadeh, M. (2024). Estimating maximum initial wave amplitude of subaerial landslide tsunamis: a three-dimensional modelling approach. Ocean Modelling,189,102360. https://doi.org/10.1016/j.ocemod.2024.102360. [pdf]

103- Sabeti, R., Heidarzadeh, M., Romano, A., Barajas Ojeda G., Lara, J.L. (2024). Three-Dimensional Simulations of Subaerial Landslide-Generated Waves: Comparing OpenFOAM and FLOW-3D HYDRO Models. Pure and Applied Geophysics, 181 (4), 1075-1093. https://doi.org/10.1007/s00024-024-03443-x. [pdf]

Year 2023

102- Heidarzadeh, M., Gusman, A.R., Mulia, I.E. (2023). The landslide source of the eastern Mediterranean tsunami on 6 February 2023 following the Mw 7.8 Kahramanmaraş (Türkiye) inland earthquake. Geoscience Letters, 10: 50. https://doi.org/10.1186/s40562-023-00304-8. [pdf]

101- Cheng, A.C., Suppasri, A., Heidarzadeh, M., Adriano, B., Chua, C.T., Imamura, F. (2023). Tsunami wave characteristics in Sendai Bay, Japan, following the 2016 Mw 6.9 Fukushima earthquake. Ocean Engineering, 287, 115676. https://doi.org/10.1016/j.oceaneng.2023.115676. [pdf]

100- Heidarzadeh, M., Iwamoto, T., Šepić, J., Mulia, I. E. (2023). Normal and reverse storm surges along the coast of Florida during the September 2022 Hurricane Ian: Observations, analysis, and modelling. Ocean Modelling, 185, 102250. https://doi.org/10.1016/j.ocemod.2023.102250. [pdf]

99- Dignan, J., Hayward, M.W., Salmanidou, D., Heidarzadeh, M., Guillas, S. (2023). Probabilistic landslide tsunami estimation in the Makassar Strait, Indonesia, using statistical emulation. Earth and Space Science, 10, e2023EA002951. https://doi.org/10.1029/2023EA002951. [pdf]

98- Mulia, I. E., Ueda, N., Miyoshi, T., Iwamoto, T., Heidarzadeh, M. (2023). A novel deep learning approach for typhoon-induced storm surge modeling through efficient emulation of wind and pressure fields. Scientific Reports, 13, 7918. https://doi.org/10.1038/s41598-023-35093-9. [pdf]

97- Sanwal, J., Rajendran, C.P., Heidarzadeh, M., Mache, S., Anandasabari, K., Rajendran, K. (2023). Temporally variable recurrence regimes of mega-tsunamis in the 6500 years prior to the 2004 Indian Ocean event. Marine Geology, 460, 107051. https://doi.org/10.1016/j.margeo.2023.107051. [pdf]

96- Takagi, H., Heidarzadeh, M., (2023). Coastal disasters in Asia: Forecasting, uncovering, recovering, and mitigation. Coastal Engineering Journal, https://doi.org/10.1080/21664250.2023.2178122. [pdf]

95- Necmioglu, Ö., Heidarzadeh, M., Vougioukalakis, G.E., Selva, J. (2023). Landslide induced tsunami hazard at volcanoes – the case of Santorini. Pure and Applied Geophysics, https://doi.org/10.1007/s00024-023-03252-8. [pdf]

94- Ehara, A., Salmanidou, D., Heidarzadeh, M., Guillas, S. (2023). Multi-level emulation of tsunami simulations over Cilacap, South Java, Indonesia. Computational Geosciences, 27, 127–142. https://doi.org/10.1007/s10596-022-10183-1. [pdf]

93- Heidarzadeh, M., Miyazaki, H., Ishibe, T., Takagi, H., Sabeti, R. (2023). Field surveys of September 2018 landslide-generated waves in the Apporo dam reservoir, Japan: Combined hazard from the concurrent occurrences of a typhoon and an earthquake. Landslides, 20, 143–156. https://doi.org/10.1007/s10346-022-01959-8. [pdf]

92- Heidarzadeh, M., Mulia, I.E. (2023). A new dual earthquake and submarine landslide source model for the 28 September 2018 Palu (Sulawesi), Indonesia tsunami. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2022.2122293. [pdf]

91- Momeni, P., Goda, K., Mokhtari, M., Heidarzadeh, M. (2023). A new tsunami hazard assessment for eastern Makran subduction zone by considering splay faults and applying stochastic modeling. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2022.2117585. [pdf] 

90- Sabeti, R., Heidarzadeh, M. (2023). A new predictive equation for estimating wave period of subaerial solid-block landslide-generated waves. Coastal Engineering Journal. https://doi.org/10.1080/21664250.2022.2110657[pdf]

Year 2022

89- Adams, K., Heidarzadeh, M.(2022). Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling. Natural Hazards. https://doi.org/10.1007/s11069-022-05692-2.[pdf]

88- Sabeti, R., Heidarzadeh, M. (2022). Numerical simulations of water waves generated by subaerial granular and solid-block landslides: validation, comparison, and predictive equations. Ocean Engineering, 266, 112853. https://doi.org/10.1016/j.oceaneng.2022.112853. [pdf]

87- Heidarzadeh, M., Gusman, A., Ishibe, T., Sabeti, R., Šepić, J. (2022). Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling. Ocean Engineering, 261, 112165. https://doi.org/10.1016/j.oceaneng.2022.112165. [pdf]

86- Heidarzadeh, M., Feizi, S. (2022). A cascading risk model for the failure of the concrete spillway of the Toddbrook dam, England during the August 2019 flooding. International Journal of Disaster Risk Reduction, 80, 103214. https://doi.org/10.1016/j.ijdrr.2022.103214. [pdf]

85- Heidarzadeh, M., Gusman, A. R., Patria, A., Widyantoro, B. T. (2022). Potential landslide origin of the Seram Island tsunami in Eastern Indonesia on 16 June 2021 following an Mw 5.9 earthquake. Bulletin of the Seismological Society of America, 112 (5), 2487–2498. https://doi.org/10.1785/0120210274. [pdf]

84- Mulia, I.E., Gusman, A.R., Heidarzadeh, M., Satake, K. (2022). Sensitivity of tsunami data to the updip extent of the July 2021 Mw 8.2 Alaska earthquake. Seismological Research Letters, 93 (4), 1992-2003. https://doi.org/10.1785/0220210359. [pdf]

83- Wang, Y., Heidarzadeh, M., Satake, K., Hu, G. (2022). Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in Kermadec Islands on March 4, 2021. Natural Hazards and Earth System Sciences, 22, 1073–1082. https://doi.org/10.5194/nhess-22-1073-2022. [pdf]

82- Mulia, I.E., Heidarzadeh, M., Satake, K. (2022). Effects of depth of fault slip and continental shelf geometry on the generation of anomalously long-period tsunami by the July 2020 Mw 7.8 Shumagin (Alaska) earthquake. Geophysical Research Letters, 49, e2021GL094937. https://doi.org/10.1029/2021GL094937. [pdf]

81- Sabeti, R., Heidarzadeh, M. (2022). A new empirical equation for predicting the maximum initial amplitude of submarine landslide-generated waves. Landslides, 19, 491–503. https://doi.org/10.1007/s10346-021-01747-w. [pdf]

80- Sabeti, R., Heidarzadeh, M. (2022). Numerical Simulations of Tsunami Wave Generation by Submarine Landslides: Validation and Sensitivity Analysis to landslide parameters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 148(2), 05021016. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000694. [pdf]

Year 2021

79- Heidarzadeh, M., Mulia, I.E. (2021). Ultra-long period and small-amplitude tsunami generated following the July 2020 Alaska Mw7.8 tsunamigenic earthquake. Ocean Engineering, 234, 109243. https://doi.org/10.1016/j.oceaneng.2021.109243. [pdf]

78- Heidarzadeh, M., Pranantyo, I.R., Okuwaki, R., Dogan, G.G., Yalciner, A.C. (2021). Long tsunami oscillations following the 30 October 2020 Mw 7.0 Aegean Sea earthquake: Observations and modelling. Pure and Applied Geophysics, 178, 1531–1548. https://doi.org/10.1007/s00024-021-02761-8. [pdf]

77- Gopinathan, D., Heidarzadeh, M., Guillas, S. (2021). Probabilistic Quantification of tsunami current hazard using statistical emulation. Philosophical Transactions of the Royal Society A, 477, 20210180. https://doi.org/10.1098/rspa.2021.0180. [pdf]

76- Salmanidou, D.M., Ehara, A., Himaz, R., Heidarzadeh, M., Guillas, S. (2021). Impact of future tsunamis from the Java trench on household welfare: merging geophysics and economics through catastrophe modelling. International Journal of Disaster Risk Reduction, 61, 102291. https://doi.org/10.1016/j.ijdrr.2021.102291. [pdf]

75- Pranantyo, I.R., Heidarzadeh, M., Cummins, P.R. (2021). Complex tsunami hazards in eastern Indonesia from seismic and non-seismic sources: Deterministic modelling based on historical and modern data. Geoscience Letters, 8, 20. https://doi.org/10.1186/s40562-021-00190-y. [pdf]

74- Heidarzadeh, M., Ishibe, T.,  Harada, T., Natawidjaja, D.H., Pranantyo, I.R., Widyantoro, B.T. (2021). High potential for splay faulting in the Molucca Sea, Indonesia: November 2019 Mw7.2 earthquake and tsunami. Seismological Research Letters, 92 (5), 2915–2926. https://doi.org/10.1785/0220200442. [pdf]

73- Heidarzadeh, M., Gusman, A. R. (2021). Source modeling and spectral analysis of the Crete tsunami of 2 May 2020 along the Hellenic Subduction Zone, offshore Greece. Earth, Planets and Space, 73, 74. https://doi.org/10.1186/s40623-021-01394-4. [pdf]

72- Adams, K., Heidarzadeh, M. (2021). A multi-hazard risk model with cascading failure pathways for the Dawlish (UK) railway using historical and contemporary data. International Journal of Disaster Risk Reduction, 56, 102082. https://doi.org/10.1016/j.ijdrr.2021.102082. [pdf]

71- Heidarzadeh, M., Rabinovich, A. B. (2021). Combined Hazard of Typhoon-Generated Meteorological Tsunamis and Storm Surges along the Coast of Japan. Natural Hazards, 106,1639–1672. https://doi.org/10.1007/s11069-020-04448-0. [pdf]

70- Heidarzadeh, M., Iwamoto, T., Takagawa, T., Takagi, H. (2021). Field surveys and numerical modeling of the August 2016 typhoon Lionrock along the northeastern coast of Japan: The first typhoon making landfall in Tohoku region. Natural Hazards, 105, 1–19. https://doi.org/10.1007/s11069-020-04112-7. [pdf]

69- Rajendran, C.P., Heidarzadeh, M., Sanwal, J., Karthykeyan, A., Rajendran, K. (2021). The Orphan Tsunami of 1524 on the Konkan Coast, Western India, and Its Implications. Pure and Applied Geophysics, 178, 4697–4716. https://doi.org/10.1007/s00024-020-02575-0. [pdf]

Year 2020

68- Momeni, P., Goda, K., Heidarzadeh, M., Qin, J. (2020). Stochastic Analysis of Tsunami Hazard of the 1945 Makran Subduction Zone Mw 8.1–8.3 Earthquakes. Geosciences, 10 (11), 452. https://doi.org/10.3390/geosciences10110452. [pdf]

67- Wang, Y., Heidarzadeh, M., Satake, K., Mulia, I.E.,  Yamada, M. (2020). A Tsunami Warning System based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. Journal of Geophysical Research, https://doi.org/10.1029/2020JB020293. [pdf]

66- Heidarzadeh, M., Putra, P.S., Nugroho, H.S., Rashid, D.B.Z. (2020). Field survey of tsunami heights and runups following the 22 December 2018 Anak Krakatau volcano tsunami, Indonesia. Pure and Applied Geophysics, 177, 4577–4595. https://doi.org/10.1007/s00024-020-02587-w. [pdf]

65- Heidarzadeh, M., Rabinovich, A.B., Kusumoto, S., Rajendran, C.P. (2020). Field surveys and numerical modeling of the 26 December 2004 Indian Ocean tsunami in the area of Mumbai, west coast of India. Geophysical Journal International, 222 (3), 1952–1964. https://doi.org/10.1093/gji/ggaa277. [pdf]

64- Sabeti, R., Heidarzadeh, M. (2020). Semi-empirical predictive equations for the initial amplitude of submarine landslide-generated waves: applications to 1994 Skagway and 1998 Papua New Guinea tsunamis. Natural Hazards, 103, 1591–1611. https://doi.org/10.1007/s11069-020-04050-4. [pdf]

63- Satake, K., Heidarzadeh, M., Quiroz, M., Cienfuegos, R. (2020). History and features of trans-oceanic tsunamis and implications for paleo-tsunami studies. Earth-Science Reviews, 202, 103112. https://doi.org/10.1016/j.earscirev.2020.103112. [pdf]

62- Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., Wijanarto, A.B. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, 106733. https://doi.org/10.1016/j.oceaneng.2019.106733. [pdf]

61- Heidarzadeh, M., Šepić, J., Rabinovich, A.B., Allahyar, M., Soltanpour, A., Tavakoli, F. (2020). Meteorological tsunami of 19 March 2017 in the Persian Gulf: Observations and analyses. Pure and Applied Geophysics, 177, 1231–1259. https://doi.org/10.1007/s00024-019-02263-8. [pdf]

Year 2019

60- Heidarzadeh, M., Wang, Y., Satake, K., Mulia, I. E. (2019). Potential deployment of offshore bottom pressure gauges and adoption of data assimilation for tsunami warning system in the western Mediterranean Sea. Geoscience Letters, 6: 19. https://doi.org/10.1186/s40562-019-0149-8. [pdf]

59- Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H.D., Kriswati, E., Supartoyo, Wijanarto, A.B., Imamura, F., Arikawa, T. (2019). The December 2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, 176, 5219–5233. https://doi.org/10.1007/s00024-019-02358-2. [pdf]

58- Le, T.A., Takagi, H., Heidarzadeh, M., Takata, Y., Takahashi, A.(2019). Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-enclosed Osaka Bay, Japan. Pure and Applied Geophysics, 176(10), 4139–4160. https://doi.org/10.1007/s00024-019-02295-0. [pdf]

57- Salmanidou, D.M., Heidarzadeh, M., Guillas, S. (2019). Probabilistic landslide-generated tsunamis in the Indus Canyon, NW Indian Ocean, using statistical emulationPure and Applied Geophysics, 176, 3099–3114, https://doi.org/10.1007/s00024-019-02187-3. [pdf]

56- Wang, Y., Maeda, T., Satake, K., Heidarzadeh, M., Su, H., Sheehan, A.F., Gusman, A.R. (2019). Tsunami Data Assimilation Without a Dense Observation NetworkGeophysical Research Letters, 46, 20452053. https://doi.org/10.1029/2018GL080930. [pdf]

55- Heidarzadeh, M., Tappin, D.R., Ishibe, T. (2019). Modeling the large runup along a narrow segment of the Kaikoura coast, New Zealand following the November 2016 tsunami from a potential landslideOcean Engineering, 175, 113-121. https://doi.org/10.1016/j.oceaneng.2019.02.024. [pdf]

54- Heidarzadeh, M., Muhari, A., Wijanarto, A.B. (2019). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176, 25–43. https://doi.org/10.1007/s00024-018-2065-9. [pdf

53- Heidarzadeh, M., Mirghasemi, A.A., Niroomand, H., Eslamian, F. (2019). Construction and performance of the Karkheh Dam Complementary Cut-off Wall: an innovative engineering solutionInternational Journal of Civil Engineering,17(6), 859–869. https://doi.org/10.1007/s40999-018-0370-4. [pdf]

52- Heidarzadeh, M., Gusman, A. R. (2019). Application of dense offshore tsunami observations from Ocean Bottom Pressure Gauges (OBPGs) for tsunami research and early warningsIn: Geological Disaster Monitoring Based on Sensor Networks, 7-22, https://doi.org/10.1007/978-981-13-0992-2_2. [pdf]

Year 2018

51- Heidarzadeh, M., Teeuw, R., Day, S., Solana, C. (2018). Storm wave runups and sea level variations for the September 2017 Hurricane Maria along the coast of Dominica, eastern Caribbean Sea: evidence from field surveys and sea level data analysis. Coastal Engineering Journal, 60 (3), 371–384, https://doi.org/10.1080/21664250.2018.1546269. [pdf]

50- Heidarzadeh, M., Satake, K., Takagawa, T., Rabinovich, A. and Kusumoto, S. (2018). A comparative study of far-field tsunami amplitudes and ocean-wide propagation properties: Insight from major trans-Pacific tsunamis of 2010-2015Geophysical Journal International, 215, 22-36. https://doi.org/10.1093/gji/ggy265. [pdf]

49- Heidarzadeh, M., Ishibe, T., Harada, T. (2018). Constraining the source of the Mw 8.1 Chiapas, Mexico earthquake of 8 September 2017 using teleseismic and tsunami observationsPure and Applied Geophysics, 175(6), 1925–1938. https://doi.org/10.1007/s00024-018-1837-6. [pdf]

Year 2017

48- Heidarzadeh, M., Necmioglu, O., Ishibe, T., Yalciner, A.C. (2017). Bodrum-Kos (Turkey-Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning systemGeoscience Letters, 4:31, https://doi.org/10.1186/s40562-017-0097-0. [pdf]

47- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., Takagawa, T. (2017). Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 Mw 7.8 event and its relationship with the April 2012 Mw 8.6 event. Geophysical Journal International, 47(3), 1601-1612, https://doi.org/10.1093/gji/ggx395. [pdf]

46- Heidarzadeh, M., Satake, K. (2017). Possible dual earthquake–landslide source of the 13 November 2016 Kaikoura, New Zealand tsunami. Pure and Applied Geophysics, 174(10), 3737–3749, https://doi.org/10.1007/s00024-017-1637-4. [pdf]

45- Fu, L., Heidarzadeh, M., Cukur, D., Chiocci, F. L., Ridente, D., Gross, F., Bialas, J., Krastel, S. (2017). Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern ItalyGeophysical Research Letters, 44 (5),2427–2435. https://doi.org/10.1002/2017GL072647. [pdf]

44- Heidarzadeh, M., Murotani, S., Satake, K., Takagawa, T., Saito, T. (2017). Fault size and depth extent of the Ecuador earthquake (Mw 7.8) of 16 April 2016 from teleseismic and tsunami dataGeophysical Research Letters, 44 (5), 2211–2219. https://doi.org/10.1002/2017GL072545. [pdf]

43- Heidarzadeh, M., Satake, K.  (2017). A Combined Earthquake-Landslide Source Model for the Tsunami from the 27 November 1945 M 8.1 Makran Earthquake. Bulletin of the Seismological Society of America, 107 (2), 1033-1040, https://doi.org/10.1785/0120160196. [pdf]

42- Satake, K., and Heidarzadeh, M. (2017). A review of source models of the 2015 Illapel, Chile earthquake and insights from tsunami data. Pure and Applied Geophysics, 174 (1), 1-9. https://doi.org/10.1007/s00024-016-1450-5. [pdf]

Year 2016

41- Gusman, A., Mulia, I.E., Satake, K., Watada, S., Heidarzadeh, M., Sheehan, A.F. (2016). Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43 (18), 9819–9828. https://doi.org/10.1002/2016GL070140. [pdf]

40- Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., Gusman, A. (2016). Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 Mw 7.0 normal-fault and 2013 Santa Cruz Mw 8.0 megathrust earthquakes. Geophysical Research Letters, 43 (9), 4340–4349. https://doi.org/10.1002/2016GL068601. [pdf]

39- Gusman, A.R., Sheehan, A., Satake, K., Heidarzadeh, M., Mulia, I.E., Maeda, E. (2016). Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 43 (9), 4189–4196. https://doi.org/10.1002/2016GL068368. [pdf]

38- Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., Gusman, A.R. (2016). Source model of the 16 September 2015 Illapel, Chile Mw 8.4 earthquake based on teleseismic and tsunami dataGeophysical Research Letters, 43 (2), 643–650. https://doi.org/10.1002/2015GL067297. [pdf]

37- Nassiraei, H., Heidarzadeh, M., Shafieefar, M. (2016). Numerical simulation of long waves (tsunamis) forces on caisson breakwaters. Sharif: Civil Engineering, 32 (2), 3-12. (in Persian with English abstract). http://sjce.journals.sharif.edu/article_1048_0.html [pdf]

Year 2015

36- Sheehan, A., Gusman, A.R., Heidarzadeh, M., & Satake, K. (2015). Array observations of the 2012 Haida Gwaii tsunami using Cascadia Initiative absolute and differential seafloor pressure gaugesSeismological Research Letters, 86(5), 1278-1286. https://doi.org/10.1785/0220150108. [pdf]

35- Heidarzadeh, M., Gusman, A.R., Harada, T., & Satake, K. (2015). Tsunamis from the 29 March and 5 May 2015 Papua New Guinea earthquake doublet (Mw 7.5) and tsunamigenic potential of the New Britain trenchGeophysical Research Letters, 42 (14), 5958-5965. https://doi.org/10.1002/2015GL064770. [pdf]

34- Heidarzadeh, M., & Satake, K. (2015). Source properties of the 17 July 1998 Papua New Guinea tsunami based on tide gauge recordsGeophysical Journal International, 202 (1), 361-369. https://doi.org/10.1093/gji/ggv145. [pdf]

33- Heidarzadeh, M., Mirghasemi, A.A., and Niroomand, H., (2015), Construction of relief wells under artesian flow conditions at dam toes: engineering experiences from Karkheh dam, Iran. International Journal of Civil Engineering, 13 (1), 73-80. https://doi.org/10.22068/IJCE.13.1.73. [pdf]

32- Heidarzadeh, M. (2015). Tsunami Risk, Preparedness and Warning System in Pakistan. In: Disaster Risk Reduction Approaches in Pakistan (pp. 119-129). Springer International publishing. https://doi.org/10.1007/978-4-431-55369-4_6. [pdf]

31- Heidarzadeh, M., & Satake, K. (2015). New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data. Pure and Applied Geophysics, 172 (3), 621–640. https://doi.org/10.1007/s00024-014-0948-y. [pdf]

30- Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., & Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS dataGeophysical Research Letters, 42, 1053-1060. https://doi.org/10.1002/2014GL062604. [pdf]

29- Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., Watada, S. (2015). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172 (3), 719–730. https://doi.org/10.1007/s00024-014-0983-8. [pdf]

Year 2014

28- Heidarzadeh, M., Krastel, S., & Yalciner, A. C. (2014). The State-of-the-Art Numerical Tools for Modeling Landslide Tsunamis: A Short Review. In: Submarine Mass Movements and Their Consequences, Chapter 43, 483-495, ISBN: 978-3-319-00971-1, Springer International publishing. https://doi.org/10.1007/978-3-319-00972-8_43. [pdf]

27- Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquakeGeophysical Journal International, 199 (2), 752-766. https://doi.org/10.1093/gji/ggu297. [pdf]

26- Heidarzadeh, M., & Satake, K. (2014). Excitation of Basin-Wide Modes of the Pacific Ocean Following the March 2011 Tohoku TsunamiPure and Applied Geophysics, 171 (12), 3405–3419. https://doi.org/10.1007/s00024-013-0731-5. [pdf]

25- Yalciner, A. C., Zaytsev, A., Aytore, B., Insel, I., Heidarzadeh, M., Kian, R., & Imamura, F. (2014). A Possible Submarine Landslide and Associated Tsunami at the Northwest Nile Delta, Mediterranean SeaOceanography, 27(2), 68-75. https://doi.org/10.5670/oceanog.2014.41. [pdf]

24- Heidarzadeh, M., & Satake, K. (2014). The El Salvador and Philippines Tsunamis of August 2012: Insights from Sea Level Data Analysis and Numerical Modeling. Pure and Applied Geophysics, 171 (12), 3437–3455. https://doi.org/10.1007/s00024-014-0790-2. [pdf]

23- Lindhorst, K., Krastel, S., Papenberg, C., & Heidarzadeh, M. (2014). Modeling Submarine Landslide-Generated Waves in Lake Ohrid, Macedonia/Albania. In: Submarine Mass Movements and Their Consequences, Chapter 44, 497-506, ISBN: 978-3-319-00971-1, Springer International Publishing. https://doi.org/10.1007/978-3-319-00972-8_44. [pdf]

22- Schwab, J., Krastel, S., Heidarzadeh, M., & Brune, S. (2014). Modeling of Potential Landslide Tsunami Hazards Off Western Thailand (Andaman Sea). In: Submarine Mass Movements and Their Consequences, Chapter 46, 517-527, ISBN: 978-3-319-00971-1. https://doi.org/10.1007/978-3-319-00972-8_46. [pdf]

Year 2013

21- Heidarzadeh, M., Mirghasemi, A., Eslamian, F., Sadr-Lahijani, S. (2013).  Application of cement grouting for stabilization of coarse materials. International Journal of Civil Engineering, 11(1), 71-77. http://ijce.iust.ac.ir/article-1-653-en.html. [pdf]

20- Heidarzadeh, M., & Satake, K. (2013). The 21 May 2003 tsunami in the Western Mediterranean Sea: Statistical and wavelet analyses. Pure and Applied Geophysics, 170 (9), 1449-1462. https://doi.org/10.1007/s00024-012-0509-1. [pdf]

19- Heidarzadeh, M., & Satake, K. (2013). Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean. Pure and Applied Geophysics, 170 (6), 1275-1293. https://doi.org/10.1007/s00024-012-0558-5. [pdf]

Year 2012

18- Mori, N., Takahashi, T., and The 2011 Tohoku Earthquake Tsunami Joint Survey Group, (2012), Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunamiCoastal Engineering Journal, 54 (1), 1-27. https://doi.org/10.1142/S0578563412500015. [pdf]

Year 2011

17- Tsuji, Y., Satake, K., Ishibe, T., Kusumoto, S., Harada, T., Nishiyama, A., Kim, H. Y, Ueno, T., Murotani, S., Oki, S., Sugimoto, M., Tomari, J., Heidarzadeh, M., Watada, S., Imai, K., Choi, B. H., Yoon, S. B., Bae, J. S., Kim, K. O., Kim, H.W., (2011), Field surveys of  tsunami heights from the 2011 off the Pacific Coast of Tohoku, Japan EarthquakeBulletin of Earthquake Research Institute of University of Tokyo, 86, 29-279. [pdf]

16- Heidarzadeh, M., Kijko, A. (2011).  A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 56 (3), 577-593. https://doi.org/10.1007/s11069-010-9574-x. [pdf]

15- Heidarzadeh, M. (2011).  Major tsunami risk from splay faulting. In: The Tsunami Threat – Research and Technology, Chapter 5, 67-80. ISBN: 978-953-307-552-5, INTECH International publishing. https://doi.org/10.5772/13375. [pdf]

Year 2010

14- Heidarzadeh, M., Pirooz M.D., Zaker N.H., (2010), Numerical modeling of generation and propagation of tsunami waves along the southern coast of Iran. Journal of Civil and Surveying Engineering, 44 (2), 165-180. (in Persian with English abstract). https://jcse.ut.ac.ir/article_20776.html?lang=en. [pdf]

Year 2009

13- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C. (2009), Modeling the near-field effects of the worst possible tsunami in the Makran subduction zone. Ocean Engineering, 36 (5), 368–376. https://doi.org/10.1016/j.oceaneng.2009.01.004. [pdf]

12- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C. (2009), Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 48 (2), 229-243. https://doi.org/10.1007/s11069-008-9259-x. [pdf]

11- Heidarzadeh, M., Pirooz M.D., Zaker N.H., (2009), Propagation pattern and tsunami travel time charts for the Iranian southern coastlines for use in the tsunami warning system, Modares Technical and Engineering, 36, 111-128. (in Persian with English abstract). [pdf] 

Year 2008

10- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C., Mokhtari, M., and Esmaeily, A. (2008), Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35 (8-9), 774-786. https://doi.org/10.1016/j.oceaneng.2008.01.017. [pdf]

9- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Synolakis, C.E., (2008), Evaluating tsunami hazard in the northwestern Indian Ocean. Pure and Applied Geophysics, 165 (11), 2045–2058. https://doi.org/10.1007/s00024-008-0415-8. [pdf]

8- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Mokhtari, M., (2008), History of tsunami occurrences and assessment of tsunami generation potential of the Makran subduction zone, Geosciences Scientific Quarterly Journal, 18 (68), 150-169. (in Persian with English abstract). https://www.magiran.com/paper/615678. [pdf]

7- Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Mokhtari, M., (2008), Assessment of tsunami generation potential and presenting a tsunami warning system for southern coasts of Iran bordering the Indian OceanSharif: Civil Engineering, 44, 45-58. (in Persian with English abstract). http://sjce.journals.sharif.edu/article_20252.html?lang=en. [pdf]

Year 2007

6- Heidarzadeh, M., Pirooz M.D., Zaker N.H., Mokhtari M., (2007), Evaluating the potential for tsunami Ggneration in southern Iran. International Journal of Civil Engineering, 5 (4), 312-329. http://ijce.iust.ac.ir/article-1-333-en.html. [pdf]

5- Zahrai, S.M., Heidarzadeh, M. (2007). Destructive effects of the 2003 Bam Earthquake on structures. Asian Journal of Civil Engineering, 8(3), 329-342. [pdf]

4- Heidarzadeh, M., Mirghasemi, A.A., and Etemadzadeh, S.M., (2007), Experimental study of chemical grouting of conglomerate foundations, International Journal of Civil Engineering, 5 (1), 66-83. http://ijce.iust.ac.ir/article-1-314-en.html. [pdf]

Year 2006

3- Heidarzadeh, M., Mirghasemi, A.A., and Etemadzadeh, S.M., (2006), Utilization of chemical grouting for water sealing of part of Karkheh dam foundation, Sharif: Civil Engineering, 35, 77-88. (in Persian with English abstract). http://sjce.journals.sharif.edu/article_276_34.html. [pdf]

2- Heidarzadeh, M., Zahrai, S.M., (2006), Assessment of the application of tuned liquid dampers for structural motion control subjected to earthquake excitations and using nonlinear elasto-plastic analysis, Journal of Faculty of Engineering, 40 (5), 763-768. (in Persian with English abstract). [pdf]

Year 2004

1- Zahrai, S.M., and Heidarzadeh, M., (2004), Tuned liquid dampers for passive control of structures. Research Bulletin of Seismology and Earthquake Engineering, 7 (1), 37-46. (in Persian with English abstract). [pdf]

Books

1- Heidarzadeh, M., Mirghasemi, A.A. (2010), Application of chemical grouting in dam engineering. Iranian National Committee on Large Dams (IRCOLD), Publication No. 87. ISBN: 978-964-8460-35-3, 132 pages. (in Persian with English abstract). [pdf]

Leave a Reply

Your email address will not be published. Required fields are marked *