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Chapter 44
Modeling Submarine Landslide-Generated
Waves in Lake Ohrid, Macedonia/Albania

Katja Lindhorst, Sebastian Krastel, Cord Papenberg,
and Mohammed Heidarzadeh

Abstract We study potential tsunami hazards associated with submarine landslides
in Lake Ohrid, Macedonia/Albania. The transboundary Lake Ohrid located on the
Balkan Peninsula shared by Macedonia and Albania is considered to be the oldest-
continuously existing lake in Europe (2—5 Ma), though the age and the origin are not
completely unraveled to date. Previous studies by means of hydroacoustic methods
have shown that the western margin of Lake Ohrid has a long history of mass
wasting. Based on seismic data, slide deposits are found in different stratigraphic
levels as well as on the lake floor where they have affected a large area. This study
is focused on the well-studied Udenisht Slide Complex covering an area of 27 km?
within the southwestern part of Lake Ohrid. The Udenisht slide is by far the largest
mass movement with an average thickness of 30-40 m and an estimated volume
of about 0.11 km?. It is therefore well within the limits of submarine landslides
that are known to be capable of triggering tsunamis. Using numerical modeling, the
propagation of a landslide-generated tsunami with an initial wave height of more
than 5 m has been calculated. Run-up heights estimated for coastal communities
around the lake are moderate in the north (2-3 m) can reach up to 10 m directly at
the site where the slide initiated. This study is a first generation of landslide tsunami
hazard assessment for Lake Ohrid and further detailed modeling is recommended
for the region.
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44.1 Introduction and Study Area

Lake Ohrid situated on the Balkan Peninsula (Fig. 44.1) in a tectonically-formed
basin is most likely the oldest lake in Europe (2-5 Ma, Albrecht and Wilke 2008).
Surrounded by high mountains, the surface of Lake Ohrid is located at an altitude of
693 m above sea level. It extends 30 km north-south and 15 km east-west covering
an area of about 360 km?.

The total water volume of Lake Ohrid is 55 km?; maximum water depth reaches
293 m (Popovska and Bonacci 2007). Previous geophysical investigations showed
the importance of Lake Ohrid as a valuable archive to study the sedimentary
evolution of a graben system over several million years (Lindhorst 2012).

Lake Ohrid has been formed as a pull-apart basin in Late Miocene with subse-
quent E-W extension within the South Balkan Extensional Regime (Burchfiel et al.
2008; Lindhorst 2012). The sedimentary infill within the central part of the basin
indicates that Lake Ohrid existed continuously since its initial formation (Lindhorst
et al. 2010). A first chronological model suggests that the oldest sediments within
the deepest part of the basin are at least 2 Ma old (Lindhorst 2012). Acoustic data
show widespread mass wasting deposits.

In this study we investigate the tsunamigenic potential of landslides within Lake
Ohrid using numerical modeling. First, we briefly summarize mass wasting features
within the basin. Afterwards we present results of our modeling approach with
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Fig. 44.1 General location map of Lake Ohrid on the Balkan Peninsula
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a focus on wave amplitudes at several stations along the shore of Lake Ohrid.
Our results increase the general understanding of landslide-generated hazard within
active basins and can be seen as a case study for other deep lakes with steep flanks
especially in regions with high seismic activities such as the alpine lakes.

44.1.1 Mass Wasting in Lake Ohrid

Slide deposits are widespread within the basin and can be found at different
stratigraphic levels indicating that Lake Ohrid has a long history of mass wasting.
Possible trigger mechanisms for submarine sliding events within Lake Ohrid were
discussed in Lindhorst et al. (2012). The fact that Lake Ohrid is located within a
seismically active region and the location of the Udenisht slide is along the active
margin point to an earthquake as the most likely trigger for the Udenisht slide event.
For example, Wagner et al. (2012) showed that an earthquake in the sixth century
most likely triggered a slide in the northwestern part of Lake Ohrid.

Seismic cross sections of the southwestern part of Lake Ohrid show several
chaotic units interpreted as mass wasting deposits within the youngest sedimentary
succession (Lindhorst et al. 2012). In total, six slide deposits stacked on top of
each other have been mapped. Up to 75 m-thick sediments overlay the oldest slide
deposits (Lindhorst et al. 2012). The Udenisht slide complex is the most prominent
subaquatic failure event in Lake Ohrid. Sediment echosounder profiles across the
sliding area only show a thin sedimentary cover. Taking the sedimentation rate into
account it was suggested that the event is younger than 1,500 years (Lindhorst
et al. 2012). The sliding area can be identified by means of morphological data
as shown in Fig. 44.2. The Udenisht slide covers almost 10 % of the entire lake
surface. The Udenisht slide has a long run-out distance. Slide deposits are up to 50 m
thick (Fig. 44.2). The volume of the slide is estimated to be ~0.11 km? (Lindhorst
et al. 2012). Interpretation of the slide morphology suggest that the slide can be
classified as a retrogressive submarine mass movement with at least two sub-events
and sudden failures of major blocks in the upper part of the slide area (Lindhorst
et al. 2012). Although a distinct head wall of the slide has not been detected, we
found evidence that the major event was initiated in shallow water depth. In 2009 a
bathymetric survey was carried out by means of an ELAC Seabeam 1180 multibeam
device resulting in a high resolution topography map (Fig. 44.2). The Udenisht slide
area is characterized by an upper slope area bounded by distinct sidewalls and a run-
out area where slide deposits up to a thickness of 60 m can be found (Lindhorst et al.
2010, 2012). Furthermore, the present topography excludes that the Udenisht slide
was triggered onshore. Seismicity along an active fault trending in NW-SE direction
and crossing the upper part of the sliding area, has been interpreted as a trigger for
a sub-event in a water depth of about 120 m (Lindhorst 2012).
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Fig. 44.2 Bathymetric map of the southwestern part of Lake Ohrid showing the morphology of
the Udenisht slide complex. Two seismic cross sections showing the slide deposits of the Udenisht
slide (yellow dashed line in S-N direction) and the slump (E-W profile) further to the north that
we used for evaluating input parameters of the modeled tsunami. Two additional slumps along the
western margin are marked

44.1.2 Numerical Approach

We use the numerical model TUNAMI-N2 (Imamura et al. 2006; Yalciner et al.
2004) to simulate the propagation of long waves generated by possible submarine
landslides within Lake Ohrid. Developed at the Tohoku University in Japan by
Fumihiku Imamura and Nobou Shuto, TUNAMI is one the famous international nu-
merical codes validated with both laboratory and field tsunami data (Yeh et al. 1996).

Tsunami modeling is usually composed of three steps of (1) generation, (2)
propagation and (3) inundation. Here, we prevent the waves from inundation on
dryland by imposing a vertical wall near the shoreline. To estimate the run-up
heights at the main coastal communities around Lake Ohrid, we calculate tsunami
wave height at offshore water depth and then apply an empirical equation to
estimate the run-up heights. In our numerical simulations, wave evolution beyond
water depth of 20 m is prohibited, and then empirical equations are used to
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estimate run-up heights. Therefore, near-shore wave phenomena such as wave
breaking are not considered here. This may imply an over-estimation of the run-
up heights.

44.1.3 Initial Tsunami Wave

The initial tsunami wave amplitude will be build up during the acceleration time
of the underwater slump. Combined information from high resolution bathymetric
and seismic data within the area of the Udenisht slide provide input parameters
to constrain the exact location, water depth, slide direction, and the geometry of
the slide. However, the initial failure mechanism is difficult to reconstruct because
we do not find a distinct headwall today. In order to overcome this problem, we
assume that the Udenisht slide initially started as a slump similar to those observed
further to the North (Fig. 44.2). Based on this assumption we apply the semi-
empirical formulas proposed by Watts et al. (2003) and Grilli and Watts (2005)
for our numerical modeling of landslide tsunamis.

The modeled submarine slide is located on the upper slope in a water depth of
120 m of the Udenisht slide complex and moves about 200 m downslope (Fig. 44.2).
We further assume that a slide block rotates around a very small angle so that
the movement can be described as a translation parallel to the slope. We do not
account for deformation of the sliding block during the short acceleration time (to)
until the maximum depression at the water surface is reach and the initial tsunami
wave has been build-up. We assume a specific density of 1,900 g/cm? and slide
geometry with width of 2,500 m, a length of 500 m, and a thickness of about 50 m
resulting in a volume of 0.0625 km? for the simulated sliding block. This volume
is half the volume of the Udenisht slide deposits (Lindhorst et al. 2012), which
we consider as realistic initial slide volume because seismic data show significant
entrainment of underlying sediments during slide propagation. The time 7y until the
maximum surface depression was generated is 14.7 s. The resulting wave has a
wavelength Ag =510 m and the characteristic wave height is 5.20 m. We calculated
an initial acceleration of ay = 0.8 m/s2, a maximum velocity of u,,, =11.4 m/s, a
characteristic distance of motion of Sy =170 m, and a small angular displacement
of A®D =0.54 rad.

44.2 Results

44.2.1 Wave Propagation and Estimated Run-Up Heights

The propagation of the modeled tsunami wave is shown in Fig. 44.3. Our modeled
mass wasting event induces a tsunami wave reaching Progradec, Sveti Naum,
Gradiste, Ohrid, and Struga after 0.5, 4, 4.5, 8, 10 min, respectively (Fig. 44.4).
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Fig. 44.3 Tsunami wave distribution (red and blue colored) in Lake Ohrid after 4 mins. Isolines
show wave propagation after initiation at the slide location (dashed square) over a time period of 10
mins. After that time the tsunami has reached all the coastlines. Grey bars indicate run-up height
normalized to the maximum run-up at Udenisht. Green dots are the virtual tidal gauge stations
(Fig. 44.4)

Waves hit the coast at Udenisht immediately after failure occurs (Fig. 44.4). The
maximum wave heights at the virtual gauge stations off Udenisht, Progradec, Sveti
Naum, Gradiste, Ohrid, and Struga are 75, 60, 120, 60, 23, and 13 cm, respectively.
The time histories of tsunami waves at selected locations are shown in Fig. 44.4. As
shown, the artificial gauges are located at different water depths of 22, 18, 20, 18,
and 20 m.
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Fig. 44.4 Time histories of tsunami waves at some artificial gauges. Gauge locations are shown
in Fig. 44.3

In general the maximum wave heights at Struga and Ohrid are relatively small
(<25 cm). The highest waves are measured at Sveti Naum at a water depth of
18 m (Fig. 44.4). Table 44.1 presents our estimation of run-up values using two
empirical equations. Whereas the first equation only considers the wave amplitude
at a certain water depth and must be considered as a very simple approach to get a
first impression of run-up heights at the coast. The second formula is an empirical
approach including more parameters such as the slope angle and gives a more
realistic estimation of run-up heights. In our cases we assume that the slope angles
offshore Udenisht and Gradiste are greatest (~4°) because they are located along the
steep sides of Lake Ohrid. The slope angles in the north are small (~2°) and for the
southern region we assume medium slope values (~3°). According to Table 44.1,
in Udenisht, which is closest to the slide, the estimated run-up heights are greatest
(2 and 10 m, Fig. 44.3). Run-up heights in Ohrid (0.5 and 2.5 m) and Struga (0.35
and 2 m) are moderate (Fig. 44.3). In the south the estimated run-up is about 5 m
for the second formula (Fig. 44.4).
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Table 44.1 Estimation of run-up values using empirical equation

Offshore surface

Location elevation (m) Water depth (m) ~ Slope angle (°) RI (m)* R2 (m)®
Udenisht 0.76 54 4 1.8 10
Progradec 0.6 22 3 0.8 4

Sveti Naum 1.2 18 3 2 6
Gradiste 0.6 20 4 1.2 5
Ohrid 0.23 18 2 0.5 2.5
Struga 0.13 20 2 0.35 2

“The empirical equation by Ward and Asphaug (2003) was used: R1 = \5/ A(d)* x +/d, where
A(d) is the tsunami amplitude at water depth d

0.41
The equation proposed by Ward and Day (2007): R2 = 3.26 X Hy X (tan )*** x (g—‘;) ,

in which Hj is the offshore water depth in meters, A is the wave amplitude at the water depth
of Hy in meters, 3 is the slope of the beach, and R is runup height in meters

44.3 Discussion and Conclusion

In order to discuss results of our modeled tsunami wave distribution across Lake
Ohrid we compare our estimated run-up value to an empirical formula of Lynett and
Liu (2005). In their approach they calculated run-up heights by taking the geometry,
submergence depth and slope angle of the failure area into account to estimate a
run-up at the coast closest to the submarine landslide event. The equation by Lynett
and Liu (2005) gives a run-up value of about 6 m which is close to the values
presented here.

According to a morphological analysis, the tsunamigenic potential for the
Udenisht slide has been characterized as low (Lindhorst et al. 2012). A long
run-out distance of slide material and the fact that the Udenisht slide has been
characterized as a retrogressive event with at least two sub-events further reduce
the absolute volume of individual failure events. However, this study illustrates
that, in general, sub-lacustrine mass failure events as observed within the modern
lake floor morphology inhibit a tsunamigenic potential. Results from our numerical
modeling presented here show that an underwater slump with a shape similar to
that in the northwestern part located at the site of the Udenisht slide is capable
to trigger a tsunami wave. Our preliminary modeling shows that this wave would
propagate across the entire lake in about 10 min but would have small to moderate
estimated run-ups at the cities of Ohrid and Struga (see Table 44.1). At the village
of Udenisht and in the southern area of Lake Ohrid we find that the estimated
run-ups are large enough to cause significant damages along the coast and are
hence a potential hazard for the coastal communities. The time between landslide
and tsunami arrival at Udenisht, Progradec, Sveti Naum, and Gradiste is less than
5 min.
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For our numerical solution we assume a simplistic scenario with the following
assumptions: (1), a simple geometry of the sliding block (2) non retrogressive
behavior of the slide, (3) the present of an intact block comparable to a slump,
(4) a short horizontal displacement of ~200 m, and (5) a submergence depth
of about 120 m. A slump-type failure was considered in our modeling because,
according to Watts et al. (2005), it has a higher potential to trigger a tsunami than
submarine slides. The effect of retrogressive behavior of a landslide would reduce
the maximum surface elevation and lead to smaller amplitudes (Bondevik et al.
2005; Harbitz et al. 2006). On the other hand, intense slide deformation in shallow
water may increase coastal run-up by more than a factor of 2 and 3 (Grilli and Watts
2005). Hence tsunamis of significant height would be triggered, if further failures
occur at the uppermost part of the Udenisht slide area.

In order to evaluate the influence of slide volume and initial submergence
depth to the initial wave height we ran the tsunami model with higher and lower
slide volumes as well as with higher submergence depth as input parameters than
presented here which would then effect the coastal amplification. We found that
the initial wave height increases dramatically if the tsunami initiates in shallower
water depth. We considered these heights as unrealistic for Lake Ohrid because
such an event during the last 2,000 years would have been mentioned in primary
sources. Because our model does not allow wave breaking effect we could only
simulate a tsunami in water depth greater than 50 m. The highest variability in input
parameters is slide volume. Although we have a good estimation of the volume that
got deposited after the failure along the western margin but it is uncertain whether
these deposits are evidences for one single event. In addition our morphological data
indicates that the Udenisht slide is a complex system of more than one event that is
different in size and submergence depth. In general, an increase in volume would
also increase the initial wave height and subsequently higher damages around the
coast of Lake Ohrid.

In conclusion, this study gives a first impression of the tsunamigenic potential
of sub-lacustrine mass movement events which are common within Lake Ohrid and
have been found in different stratigraphic levels. Our study suggests that a potential
tsunami hazard within Lake Ohrid cannot be neglected although our preliminary
modeling showed that the run-up values would be small. This approach, however,
points to the urgent need for more sophisticated modeling approaches for landslide
generated tsunamis in Lake Ohrid and comparable lakes.
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